Advanced Hydrogen Liquefaction Process

Funding Opportunity Number: DE-PS36-07GO97009

Joe Schwartz Praxair - Tonawanda, NY

DOE Annual Merit Review Meeting June 11, 2008

DOE Hydrogen Program

Copyright © 2008 Praxair Technology, Inc.

This paper was written with support of the U.S. Department of Energy under Funding Opportunity No. DE-PS36-07GO97009. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted paper. This presentation does not contain any proprietary or confidential information.

Project ID PDP-31

Introduction

Program Timeline

2008 Budget

	Requested	Spent Through 4/15/08
DOE	\$ 99,712	\$ 0
Praxair	\$ 24,928	\$ 0
TOTAL	\$124,640	\$ 0

7/08 - 7/09		7/09-7/10		7/10-7/11	
Phase I		Phase II		Phase III	
	12	3	4	5	6

Phase I - Feasibility

- 1 Develop Alternative Hydrogen Liquefaction Processes
- 2 Validate Ortho-Para Conversion Process Performance

Phase II - Hydrogen Liquefaction Process Development

- 3 Establish Efficiency, Equipment, and Material Performance Targets
- 4 Estimate Capital Cost

Phase III – Process Performance Evaluation

- 5 Demonstrate Improved Ortho-Para Conversion Process
- 6 Evaluate Potential Cost Reduction and Efficiency Improvement

Barriers Addressed

- C. High Cost and Low Energy Efficiency of Hydrogen Liquefaction
 - Reduced capital cost
 - Improved efficiency
 - Improved overall process by integration

Objectives

- Program Develop a low-cost hydrogen liquefaction system for 30 and 300 tons/day that meets or exceeds DOE targets for 2012
 - Improve liquefaction energy efficiency
 - Reduce liquefier capital cost
 - Integrate improved process equipment invented since last liquefier was designed
 - Continue ortho-para conversion process development
 - Integrate improved ortho-para conversion process
 - Develop optimized new liquefaction process based on new equipment and new ortho-para conversion process

Phase I – Feasibility

- Develop conceptual designs for improved processes
- Validate ortho-para conversion process performance

Hydrogen Liquefaction Targets

Category	2005 Status	2012	2017		
Small-Scale Liquefaction (30,000 kg H ₂ /day)					
Installed Capital Cost (\$)	\$50M	\$40M	\$30M		
Energy Efficiency (%)	70%	75%	85%		
Large-Scale Liquefaction (300,000 kg H ₂ /day)					
Installed Capital Cost (\$)	\$170M	\$130M	\$100M		
Energy Efficiency (%)	80%	>80%	87%		

Liquefied Hydrogen LHV

Liquefied Hydrogen LHV + Liquefaction Energy

Efficiency =

Milestones

- Phase I Feasibility
 - Develop Novel Conceptual Process Designs
 - Validate Improved Ortho-Para Performance
- Phase II Process Development
 - Establish Performance Targets
 - Develop Preliminary Capital Cost Estimate
- Phase III Performance Evaluation
 - Demonstrate Ortho-Para Performance
 - Validate Capital Cost and Performance Improvement

Program Approach

- Build on successful high-risk, low-effort program funded through EMTEC
 - \$200,000 program that demonstrated potential for improved ortho-para conversion process
 - Enabled Praxair to propose this project to advance hydrogen liquefaction process development
- Incorporate other process improvements beyond improved ortho-para conversion

Phase I Plan

- Process Optimization, Design, and Economics (45%)
 - Develop alternative hydrogen liquefaction processes that can optimally integrate new equipment and improved ortho-para process
- Process Equipment Evaluation (30%)
 - Evaluate commercially available critical equipment
 - Evaluate novel turbomachinery
- Ortho-Para Conversion Optimization (25%)
 - Validate process performance in laboratory-scale test facilities

Liquid Hydrogen

- In the 1960's, liquid hydrogen plants were built to support the Apollo program
 - Space shuttle capacity is 113 tons (383,000 gallons)
 - Saturn V rocket used 100 tons (339,000 gallons)

Photo courtesy of NASA

- Today, liquid hydrogen is used to reduce the cost of hydrogen distribution
 - Liquid hydrogen can be transported economically in larger quantities for longer distances than compressed gas
 - Liquid hydrogen is used to provide high purity product because impurities condense before hydrogen

Hydrogen Liquefaction Existing Process Flow Diagram

Hydrogen Liquefaction

- > The plants are very capital intensive
 - Infrequent builds make it difficult to reproduce designs
 - Large plants have high capital risk
 - Want to avoid unused capacity
- The process is very energy intensive
 - Typical unit powers are about 12.5 to 15 kWh_e/kg
 - Hydrogen lower heating value is about 33 kWh/kg
 - Hydrogen boiling point is 20 K = 253°C = 423°F
- Capital cost is more than half of the total

Hydrogen Distribution

Liquid Tanker 4500 kg H₂

Tube Trailer 300 kg H₂

- Both weigh about 80,000 lbs
- Liquid hydrogen might not be the best way to supply the "Hydrogen Economy", but it will play a significant role in the transition period

Hydrogen Delivery

- Pipeline (~ 1 billion scfd)
 - Refineries and other large hydrogen consumers
- Liquid (~ 10 million scfd)
 - 1.8 million scf/truck
 - Liquid serves an important market segment
- > Tube Trailers
 - 125,000 scf/truck
- Cylinders
 - 250 scf/cylinder

Forms of Molecular Hydrogen

- Difference is due to proton spin
 - Normal Hydrogen is 75% Ortho, 25% Para
 - Equilibrium Liquid Hydrogen is 0.2% Ortho, 99.8% Para
- Ortho-Para conversion requires 18 45% of the minimum work requirement for liquefaction*
 - Depends on the conversion process used

^{*} From Baker, C. R. and Shaner, R. L. A Study of the Efficiency of Hydrogen Liquefaction, Int. J. Hydrogen Energy, v. 3, p. 321, 1978.

Equilibrium Composition

- Para fraction increases as temperature approaches liquid range
 - Catalyst is used to reach equilibrium composition during cooling

Ortho-Para Enthalpy

- Heat of liquefaction/vaporization is 192 Btu/lb
- > Heat of conversion from n-H₂ to e-H₂ in liquid is higher

From Singleton, A. H. and Lapin, A. Design of Para-Orthohydrogen Catalytic Reactors, Adv. Cryo. Eng., v. 11, p. 617, 1965.

Boil-Off Loss

Heat of conversion from normal to para is higher than the heat of liquefaction

Spontaneous conversion in the storage tank can cause vaporization

Calculated values from:

Gursu, S. et al. An Optimization Study of Liquid Hydrogen Boil-Off Losses, Int. J. Hydrogen Energy., v. 17, p. 227, 1992.

Future Work - Task 1

- Process Optimization, Design, and Economics
 - Develop alternative liquefaction processes
 - 2009 Critical Milestone
 - Incorporate improved ortho-para conversion process
 - Estimate capital cost
 - 2010 Critical Milestone
 - Establish component performance targets
 - 2010 Critical Milestone
 - Develop process simulations for new designs
 - Validate potential cost reduction
 - 2011 Critical Milestone

Process Equipment Evaluation

- Evaluate commercially available critical equipment
 - Use this to develop new liquefaction processes
- Evaluate novel turbomachinery
 - Use this to develop new liquefaction processes
- Estimate capital cost
 - 2010 Critical Milestone
- Update critical equipment evaluation

Equipment development is beyond the scope of this program

Future Work - Task 3

- > Ortho-Para Conversion Process Optimization
 - Validate improved ortho-para performance
 - 2009 Critical Milestone
 - Select best candidate ortho-para process
 - Demonstrate process performance
 - 2011 Critical Milestone

Hydrogen Liquefier Equipment Design Considerations

Component	State of the Art	Near Term	Long Term
Compressors	Reciprocating Screw	Reciprocating Centrifugal	Centrifugal Hydride Shockwave
Pre-Cooling	Liquid N ₂	Mixed gas	Magnetic
Low-Temp Refrigeration	Reverse Brayton	Reverse Brayton with advanced turbines	Magnetic Acoustic
Heat Exchangers	Brazed aluminum	Brazed aluminum Micro-channel	Micro-channel
Ortho-Para Conversion	Catalytic conversion	Improved ortho-para process	Advanced ortho-para process

- Multi-faceted approach to improving hydrogen liquefaction by improving process efficiency and reducing capital cost
- Goal is to define a new liquefaction process that integrates state-of-the-art equipment and takes full advantage of its increased capability
- Incorporate improved ortho-para conversion process already under development